TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF CIVIL ENGINEERING

Soil Mechanics

SUBMITTED BY

SURENDRA SHARMA (078BCE178)

SUBMITTED TO

DEPARTMENT OF CIVIL ENGINEERING

PULCHOWK CAMPUS

PULCHOWK,LALITPUR

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

A LAB REPORT

SOIL COMPACTION

Lab No.: 03 Experiments Date: 2080/10/03 Submission Date: 2080/10/17

SUBMITTED BY: Name: Surendra Sharma Group: H3 Roll No.: O78BCE178 SUBMITTED TO: Department of civil Engineering (Geotech)

SEA

SOIL COMPACTION

OBJECTIVE

- To determine relationship between moisture content of soil and its day density and determine optimum moisture content and maximum day density of a soil by standard proctor test.

APPARATUS REQUIRED:

1.3.0 kg of soil sample

2. 4.75mm sieve

3. 2250 mm3 proctor cylindrical mould (150mm & and 127-3mm height)

4. spatula

5. Rammer consisting 2.5kg mass

6. Cups

THEORY:

compaction is any process by which the soil particles are artificially arranged and packed together into a closer state of contact by mechanical means so that day density of soll is increased. The process of compaction is accompanied by expulsion of air and the volume of water in the soil remains unchanged. Application:

·Due to compaction, the density, shear strength and

- bearing capacity of soil increase The stability of earthern dams, ombankments, roads are achieved from results of compaction test.
- . The result of compaction is to reduce void ratio, poposity, permeability and settlements.

-> compaction is measured in term of day density, so the day density achieved after compaction is also called as degree of compaction. Thus,

Degree of compaction (Yd) = $\frac{\gamma}{1+w_c}$, $\gamma \rightarrow Bulk$ density we $\neg water content$



The maximum drydensity only can be achieved at a moisture content Known as optimum moisture content (OMG). The curve showing the relation between dry density and moisture content is known as compaction characteristic curve and unique for each soil.

LAB TEST OF COMPACTION BY STANDARD PROCTOR TEST: PROCEDURE:

i) 3kg of soil sample was taken, pulvesized and passed through 4.75mm sieve.

- (ii) A cylindrical mould of 2250c. m³ volume having drameter of Isomm and height of 127.3mm was taken and a detachable collor was attached to the mould on top and bolted. Mould was bolted to base plate.
- (iii) Soil sample was mixed with water (say 137. of 3000ml) and kept inside the mould making a layer of uniform thickness (say 400mm).
- (in) soil was compacted using sammer convisting of 2-sig mass falling freely such that each layer received 25 number of blows.
- (V) Process was repeated for such that three layers of soil was compacted.
- () Weight of compacted soil with mould was taken and some amount of compacted soil (from top, bottom and middle) of mould was taken for day density test.
- Decless of compaction was repeated for different water contents lincreasing 5% each time) until the weight of soil decreased.
- (VIII) computation of day density and moisture contents were done.
- (IX) Graph was plotted for mouture content vis dry density and Optimum moisture content and maximum dry density was determined.

Compaction Test

Objectives

To determine the optimum moisture content and maximum dry density of a soil by standard proctor test.

Apparatus:

Theory :

Application

Due to compaction, the density, shear strength and bearing capacity of soil increase. The result of compaction is to reduce void ratio, porosity, permeability and settlements. The stability of earthen dams, embankments, roads are achieved from results of compaction tests.

Procedure:

Observation and calculations :

Standard proctor test

Volume of mound $(v) = 2250 \text{ cm}^3$

Weight of rammer = 2.5 kg

Number of blows = 25

Number of layers = 3

Determination of bulk density of soil (Yb),

Observation no.	1	2	3	4
1.weight of mould + base plate, W ₁ (g)	5991-5	5991-5	5991-5	5991-5
2.weight of mould + base plate + compacted soil	9293-0	9174-0	94340	9463.0
,W ₂ (g) 3.weight of compacted soil (w) = (w ₂ -w ₁)	3301-5 V = 1000 2250	3182-5 V= 207834	3442.5 V= 2088-43	3471-5 V=2032-89
4.Bulk density, $\gamma_{b} = \frac{w}{v} g/cm^{3}$	1.4673	1-5313	3-6484	1.7077

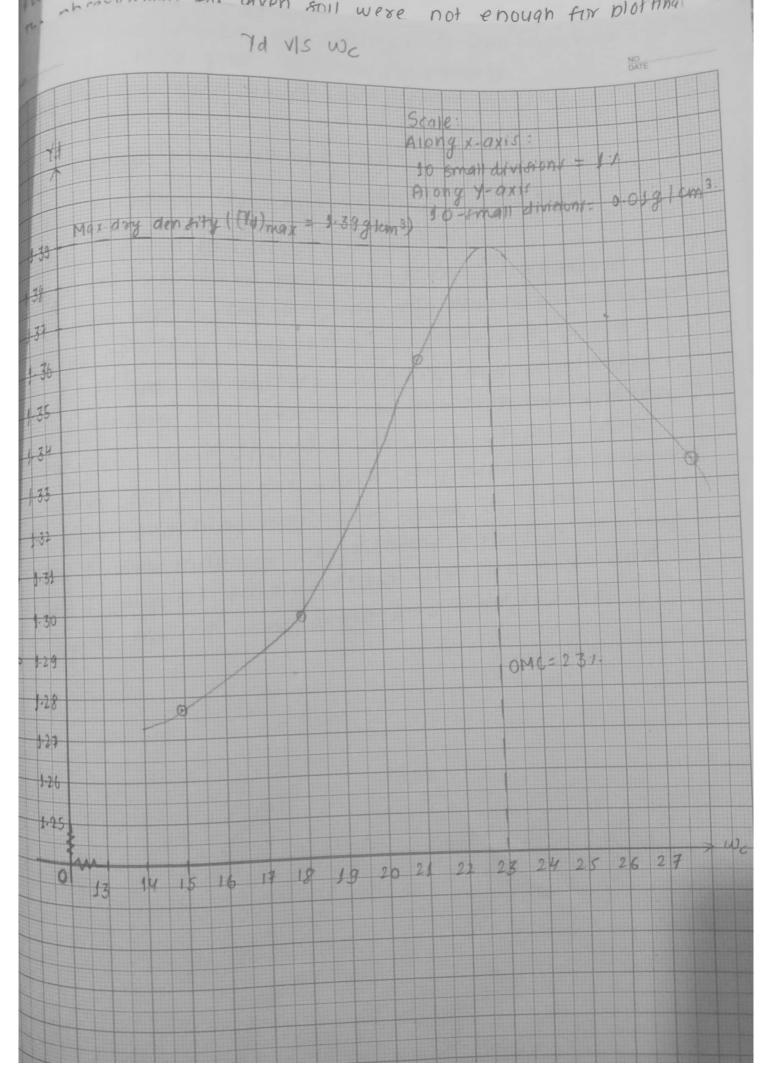
Determination of water content and dry density of each compacted soil sample

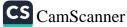
CS CamScanner

Rulino-169-180/195

Observation no.		2	3	
1. Can no. 2.weight of can(w ₃) 3.weight of can +wet soil (w ₂) 4. weight of can +dry soil (w ₃) 5.weight of water = w ₂ -w ₃ [w ₃] 6. weight of dry soil (w _d) = w ₃ -w ₃ 7.water content W = www * 10000	112 6-529 18-188 16-677 1-511 10-148 14-89%	2 6.318 11.818 10.984 0.834 4.666 17.8747.	6 - 514 14 - 566 13 - 165 1-401 6 - 651 21 - 0657.	10 41 12. 10. 1. 5. 27
8.Dry density = $\frac{\gamma b}{1+w} g/cm^3$	1.277	1.299	1.3616	1.

Plot a graph between dry density and water content and find out the optimum moisture content and maximum dry density and water content and find density is plotted as ordinate and water content as abscissa.


RESULT:


DISCUSSION AND CONCLUSION:

Observation no. I 2 3 N2 of comparted soil (w) 3301.3 3182.5 3442.5 3471.5 Volume of comparted soil (V) (N) (N) 2250 2078.34 2088.43 2032.89 Buik density, $Y_b = W$, $g_{1}w^3$ 1.4673 1.5313 1.6484 3.7077 Determination of water content and dry density $from each comparted soil scill science 3.5313 1.6484 3.7077 Determination no. 1 2 3 4 4.7077 Determination no. 1 2 3 4 Nt: of water (Nw), g 1.511 0.834 1.4655 Nt: of dry soil (Wd), g 10.148 4.666 6.651 5.967 Water content, W_c = \frac{WW}{Wd} 14.897. 17.877. 21.0657. 27.907. $	Number of layers = 3 Determination of built	achising	01		T	4
NE of comparted solit (W) 3301.3 3.420 0 2032.89 Volume of comparted solit 2250 2078.34 2088.43 $4:2.15cm$ Buik density, $\gamma_b = \frac{W}{V}$, $g_{1.01}$ 1.4673 1.5313 3.6484 3.7077 Determination of water content and dry density $for each compacted soil scample$ 1.4673 1.5313 3.6484 3.7077 Determination of water content and dry density $for each compacted soil scample$ 1.4673 1.5313 1.6484 3.7077 Nt of water (WW), g 1.511 0.834 1.401 1.6655 Nt of water (WW), g 1.511 0.834 1.401 1.6655 Nt of dry soil (Wd), g 10.148 4.6666 6.651 5.967 Water content, $W_c = \frac{WW}{Wd}$ 14.897 17.877 21.0657 27.907	Observation no.	1	2	0		
Volume of compacted soll (V) crem3) 2250 (d=0cm) $2078.34(d=1.7cm)$ $2088.43(d=1.6cm)$ $2034.87d:2.15cm) Built density, Y_b = \frac{W}{V}, g_{1} m² 1.4673 1.5313 1.6484 3.7077 Determination of water content and dry densityfor each compacted soil sample 1.5313 1.6484 3.7077 Observation no. 1 2 3 4 Nt of water (NW), g 1.511 0.834 1.401 1.665 Nt of dry soil (Wd), g 10.148 4.666 6.651 5.967 Water content, W_c = \frac{WW}{Wd} 14.897 17.877 21.0657 27.907$	we of comparted soil (w)	3301.3	3182.5		_	
But attending the $\sqrt[3]{9}$, $\sqrt[$	volume of compacted soil (V) cmcm3)		(d = 1.700	(d= 1.6cm)) d	=2-15cm)
for each compatized solid control1234Observation no.1234Wt. of water (Ww),g1.5110.8341.4011.665Wt. of dry solid (Wd),g10.1484.6666.6515.967Water content, W = $\frac{WW}{Wd}$ × 100414.897.17.877.21.0657.27.907.	Buik density, Yb= W, g,un	1.4673	1.5313	3.6484	1	1.7017
Wt of water (Ww), g 1.511 0.834 1.401 1.665 Wt of dry soll (Wd), g 10.148 4.666 6.651 5.967 Water content, W ₂ = $\frac{WW}{Wd}$ × 100 ⁴ 14.897 17.877 21.0657 27.907	for each compacted	1				
Observation no. I	for each compacted	5011 80				
$wt \cdot of dry soll (wd), g$ 10.148 4.666 6.651 5.967 $water content, W_{2} = \frac{ww}{wd} \times 100^{4}$ 14.897 17.877 21.0657 27.907		1.511	0-83	1 1.401		1.665
Water content, W2= WW x100%. 14.89%. 17.87%. 21.065%. 27.90%.		10-148	4-666	6.651		5.967
Dry density $Nd = \frac{NB}{1+W_c}$ 1.277 1.299 1.3616 1.335 (3,cm3) $\frac{1+W_c}{1+W_c}$			1. 17.87	1. 21-065	4.	27-90%
	Dry density, it = 76 (g, cm3) I+Wc	1.277	1-299	1.361	6	1-335

FESULT: The observations for given soil were not enough for plotting the relation between dry density (rd) and moisture content (wc) to find optimum dry density. However, assumped graph was plotted for it:

We got, Optimal moisture content = 23%. Maximum day density ((Yd)max) = 1.39 glcm³.

Discussion AND CONCLUTION:-From the standard proctor test, the relationship between water content and dry density was obtained. After Plotting compaction characteristic curve; we found Optimal dry density and maximum dry density. The results are however not-satisfactory as there should have been at least two water contents for which dry density decreased after reaching maximum value to find OMC after reaching maximum dry density exactly. However, the ways of finding them were learned and application of compaction was add ressed.

TITLE: Divect Shear Test OBJECTIVE: TO determine shear parameters of sond specimen shear strength is an important engineering property of soil which controls the stability of soil mass under load. It governs the bearing capacity of soil, the stability of slope, the easth pressure against retaining structures and many other phenomena. So it is essential to find out the shear properties of soil. shear strength of a soil is its maximum resistance THEORY: to shearing stresses. The shear strength of soil may be represented as: $S = C' + \sigma' \tan \phi$ where, c'= effective coheston $\sigma' = Effective stress$ \$= Angle off siction of soil or effective angle of shearing resistance. The shear tests can be conducted under three diffevent drainage conditions. The direct shear test is generally conducted on sands or sandy soil as a consolidated doained test. APPAILATUS REQUIRED: (i) Shear box divided into two halves by a horizontal plane. (11) porous stone, 6mm thick; 2NOS. (iii) Loading pad, loading yoke (iv) proving oing, capacity 2KN (v) Dial gauge, accusacy, 0.01mm, (m) Spatula,

 PROCEDURE: The anal dimensions of Sheas box wese measured: Groover and power plate was kept in the sold of the box. Soll was kept up to Ismm to zome and again power plate and Groove twas tept in upper half parton. After revelled the soll sample. Both half portions were fixed with help of locking score and the box was mount on the loading frame. Opper half was brought in contact with proving ring. The contact was checked by giving slight movement. The loading yoke was mount on the ball placed on the loading pad. One of the dial gauge was mounted on the loading yoke on the ball placed on Ibading pad and another on the containers to second the host zontal aurplace ment. The weight of loading yoke was applied at a constant wate of strain and reading of Proving ring, the host zontal and vertical displacement dial gauge were recorded. Few reading were taken at close interval. The vertical load was changed and above steps were recorded. Strepated. Note: Locking plas are removed before capplying host zontal frame.

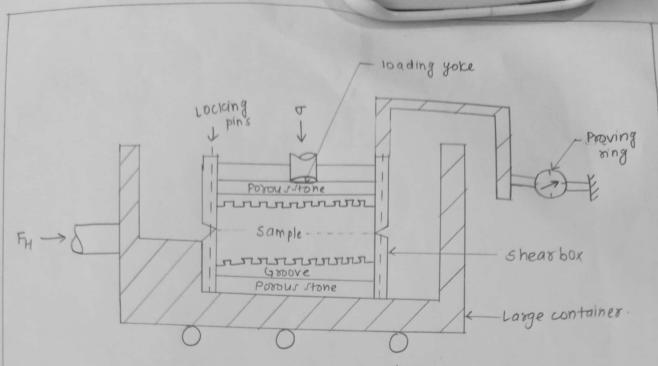
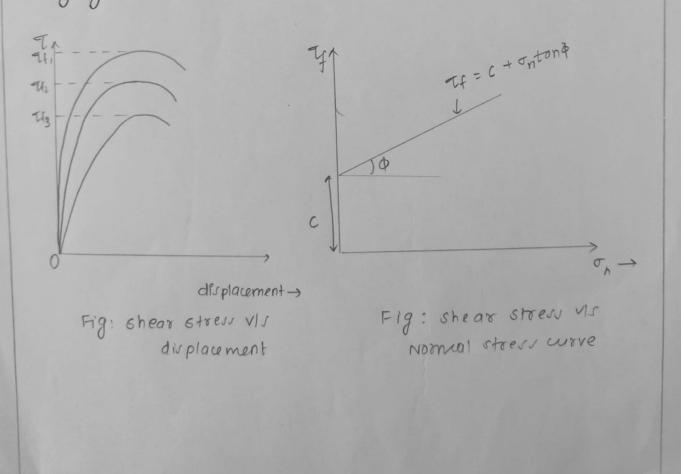
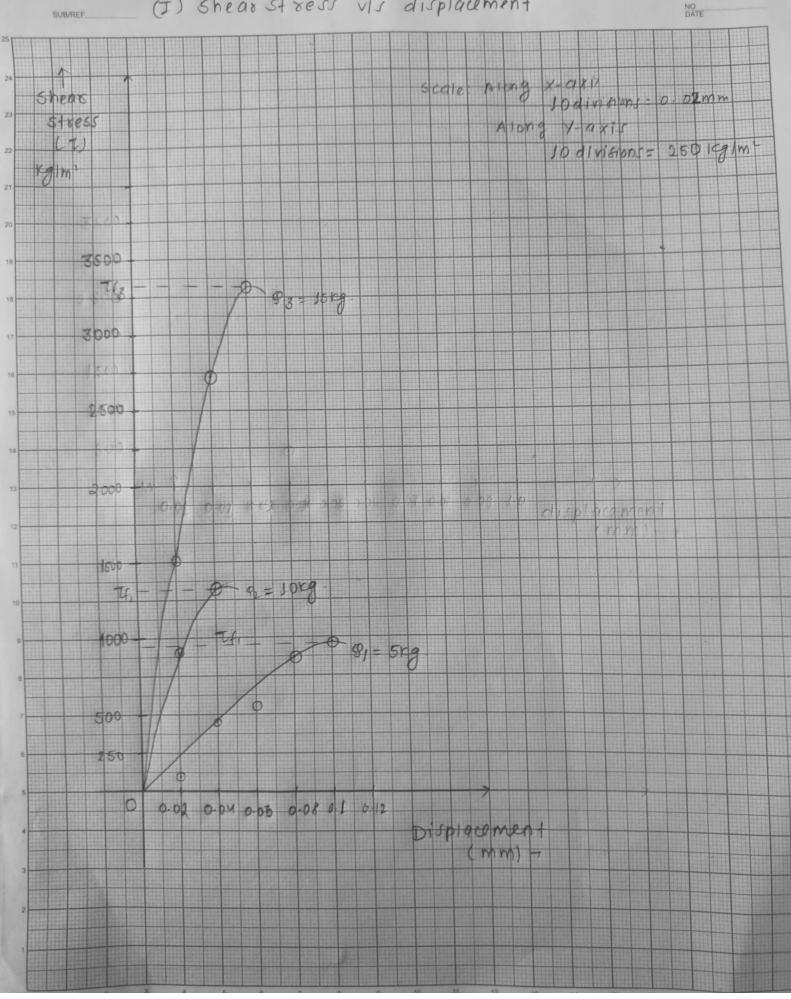
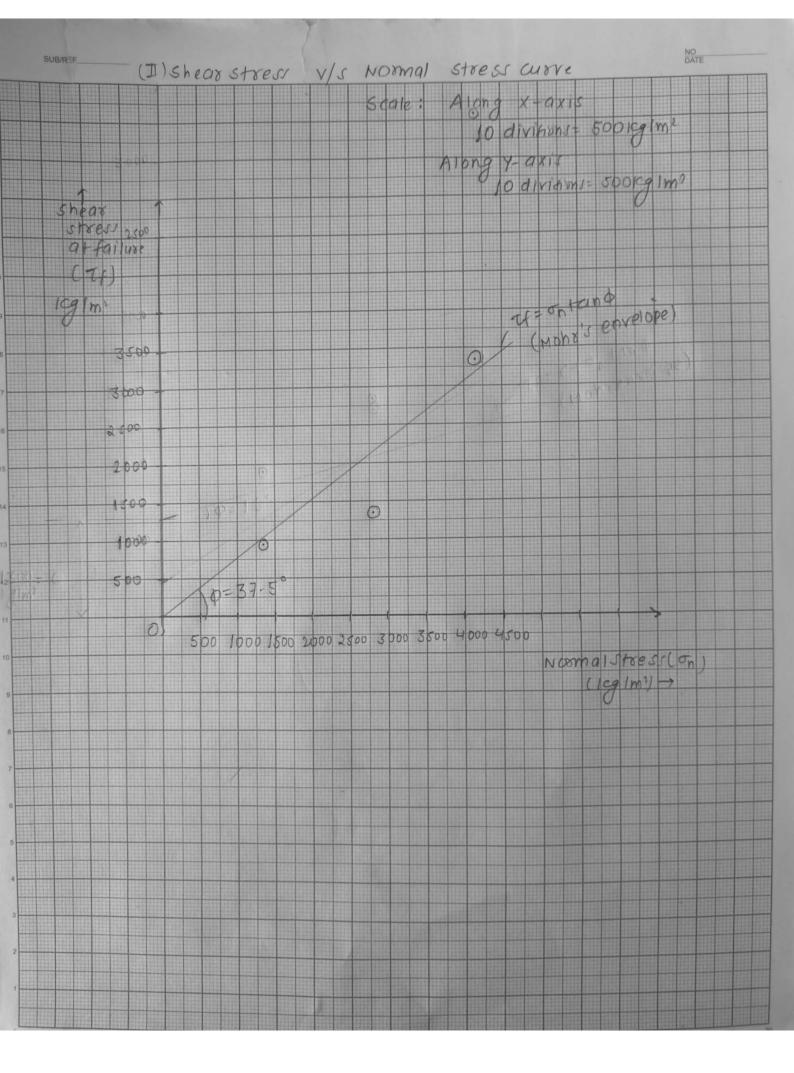



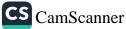
Fig: Direct shear test

The very lts of the test are presented in the form of gaphs. The value of c and & are obtained from the maximum shear stress obtained from shear test and varying normal load.



	SERV	1 JON 1	AND	CALCO	I ATTO						
	Calib	ATJON I	actor	critico	CHIJO	N N		12.41	6504		
	lea	st count	En	Je Ciac	dda = 1	0.34	rg pe	r divid	HOY	,	
		st count	708	aefier	110n =	0-09n	nm			- 1	11-3
	F	Size of									
		Normal			<u> </u>			(h	110-2	U	
2.	N·	Dial gaug	ge Re	ading(a)	Defle	ction ol) mm	Provin	g Ring J	shea	Y .	stress
1		20			0.03	2 '	1		0-31	4 9	2, 5glim 4.44
2		40			0-04		5	1-7			172-22 566-67
3		60			0.06		6		3.0		850
4		80			0.08		9		3.4		944-44
5		100			0.1		10		0		CTF)
6		120			0-12		0		U		
	Dial	gauge	d or mais	Deflect	$p = \frac{010}{3.6x}$	PODVIN	ng king	-78 leg Shear 1090	<u>,</u>	she	ress
	Dial	Nor gauge eading	d or mais	tren; o;	$p = \frac{010}{3.6x}$	PODVII		Shear	<u>,</u>	she	ar ress , lcg)m
F08 5.N.	Dial	Noð gauge	d o	Deflect	$p = \frac{510}{3.6x}$ tion),mm	PODVII	ng ping ading	Shear	i Ng	she st (T)	ress
5 · N ·	Dial	Nor gauge eading (a)	d o.	Deflect (a xo.01	$p = \frac{010}{3.6x}$ $hion$ $hion$ $hion$	podvin pec Cl	ng Þing aðing b)	Shear 1090 (bxo-34	j I)lg	she st (T) 8	ress , legim
5.N. 1 2	Dial	Nor gauge eading (a) 20 40	doc	tress; σ; Deflect (a x 0 · 0) 0 · 0; 0 · 0 9 = 1	$p = \frac{10}{3.6x}$ Hion $j_{,mm}$ $p = \frac{10}{3.6x}$ $f = \frac{10}{3.6x}$ $f = \frac{10}{3.6x}$	podvin pec ci g JL	ng ping ading b)	Shear 1090 (6x0-34 3-06 4.71	i Nig S	she st (T) 8 13	50 22-22 (Tf2)
5.N. 1 2	Dial	Nor gauge eading (a) 20 40	doc	Deflect (a x 0.01 0.02	$z = \frac{0}{3.6x}$ $fion$	podvin pec ci g JL	ng ping ading b) H = 41	Shear 1090 (6x0-34 3-06 4.71	i Nig S	she st (T) 8 13	50 22-22 (Tf2)
5.N. 1 2	Dial Dial	Nor gauge eading (a) 20 40	d of	tress; σ; Deflect (a x 0 · 0) 0 · 0; 0 · 0 9 = 1	$a = \frac{10}{3.6x}$ $fion$ $fion$ $fion$ $fion$ $\sigma_{3} = \frac{10}{3}$ $\sigma_{3} = \frac{10}{3}$ $fion$	Provin Provin Provin Provin	ng ping ading b) H = 41 s= 41 ing peading	Shear 1000 (6x0-34 3-06 4.70 66.67	Hig billing bi	she st 13 Im ² she	88 55 1 cg 1 m 50 22-22 CT(f2) 08
5.N. 1 2 For	Dial Dial	Nor gauge eading (a) 20 40 40 mal loa No Gauge	d of	tress; o; Deflect (a x 0.01 0.02 0.02 93 = 1 Stress Deflec	$a = \frac{10}{3.6x}$	Proving Proving	ng ping ading b) H = 41 3 = 41 ing peading	Shear 1000 (6x0-34 3-06 4.71 66.67 Shear 100d	Flog 8 Ng	she strange	ress ress ress ress ress ress ress
5.N. 1 2 For	Dial R Dial Re	Nor gauge eading 20 40 40 mal loa No Gauge ading, (a)	d of	tress; o; Deflect (a x 0.01) 0.02 0.02 93 = 1 stress Deflec (a x0.01)	$p = \frac{10}{3.6x}$ $fion$ $fion$ $fion$ $fion$ $fion$ $\sigma_{3} = \frac{1}{3}$ $\sigma_{3} = \frac{1}{3}$ $fion$ $fion$ $fion$ $fion$ $fion$	Proving Proving Proving Cb	ng ping ading b) 4 4 3 = 41 ing peading	Shear 1000 (6x0-34 3-06 4-71 66-67 Shear 1000 (6x0-34)	r Hig 5 6 Hig 8 Ng	she (T) 8 13 $1m^2$ she 5 to 7 , 1115	ress ress




SUB/REF.

(I) Shear Stress VIS displacement

RESULT AND CONCLUSION

Hence, from graph friction angle, \$=37-5° and coherron=0, as the given a sample was sound.

Hence, from the direar shear test shear parameters of given soil, c and \$\$\$ can be found. It is quice method Of finding shear parameters which is essential for design and construction of structure.

These might have occurred some error due to aging of equipments, error which observing measurements and callbration error

TITLE: VARIABLE/ FALLING HEAD METHOD

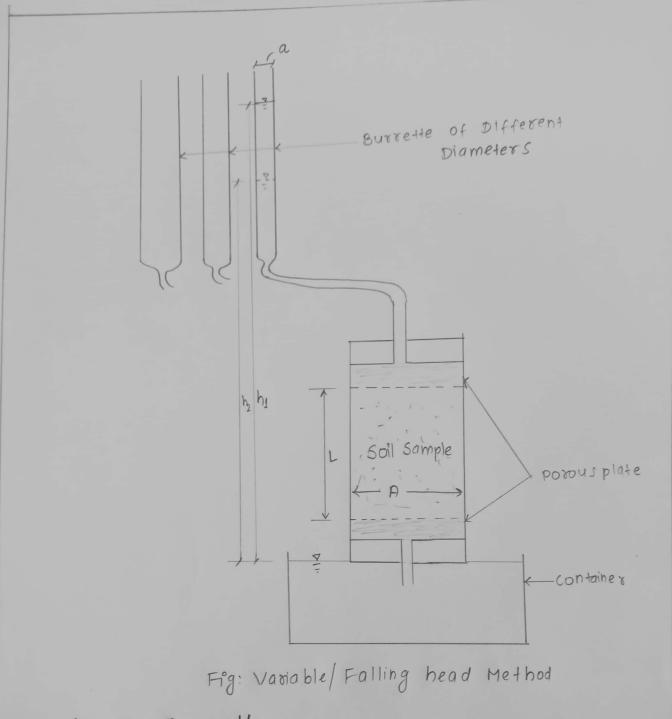
to defermine permeability of given soil sample OBJECTIVE: SCOPE:

Vasiable head method is suitable for determination of permeability of fine grained soil.

THEORY: A soil sample is kept between two porous plate. The vertical graduated stand pipe of known diameter called burette is fitted to permeameter. The porous is saturated by keeping it under water for 24 hours or by beeping it in boiling water for 8-10 minutes. The soil sample is saturated by upward flow of water.

Unlike, constant head method head in burrete changes with time. Thus, initial head in bussette at time (t=0) is noted and head in burette after time (t=t) is noted.

Finally, we can find permeability of given soil sample by


$$k = 2.303 \frac{aL}{At} \log_{10} \left(\frac{h_1}{h_2} \right) - (1)$$

where,

a = cross-sectional area of burrette

- L= Length of soil sample
- A = coord sectional area of sample
- t= Final time
- hj= head in bussette at t=0
- hz= head in bussette at t=t
- K= permeability of soil sample.

Selection of Burrette: Higher the permeability of soil sample, larger the diameter of burrette used. Example: for sand we use larger diameter burrette

TITLE: UNCONFINED COMPRESSION TEST DBJECTIVE:

To defermine the value of Cy (undrained coheston) for a clayey soil.

SCOPE:

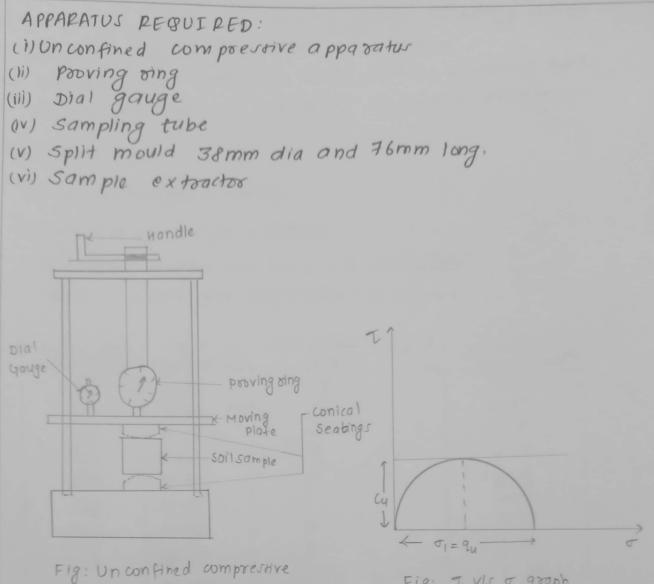
For quick measurement of unconsplidated undrained shear strength of intact saturated clay the ned comprestive test can be used. It provides the shear strength of soll after immediately being loaded. Also, the sensitivity of the soil may be easily determined by conducting the test on undisturbed sample and then on removided sample.

THEORY :

Unconfined compression test is a special form of a triaxial test in which the confining Material pressure is zero. This test can be conducted only on clayey soil off which can stand on its own. It is generally performed in intact (non - fissured) saturated clay specimens. Shear strength of soil can be given by Moho-columb failure criteria as:

> S=C+ σ'tanφ where, s = shear strength c = cohesion σ'= normal stress φ = angle of friction.

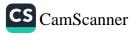
For undrained test of saturated clayey soil, (\$=0)


where Cy = undrained coheston

AIVO,

<u>94</u>= Cu 2

where, qu = to unconfined compression strength.

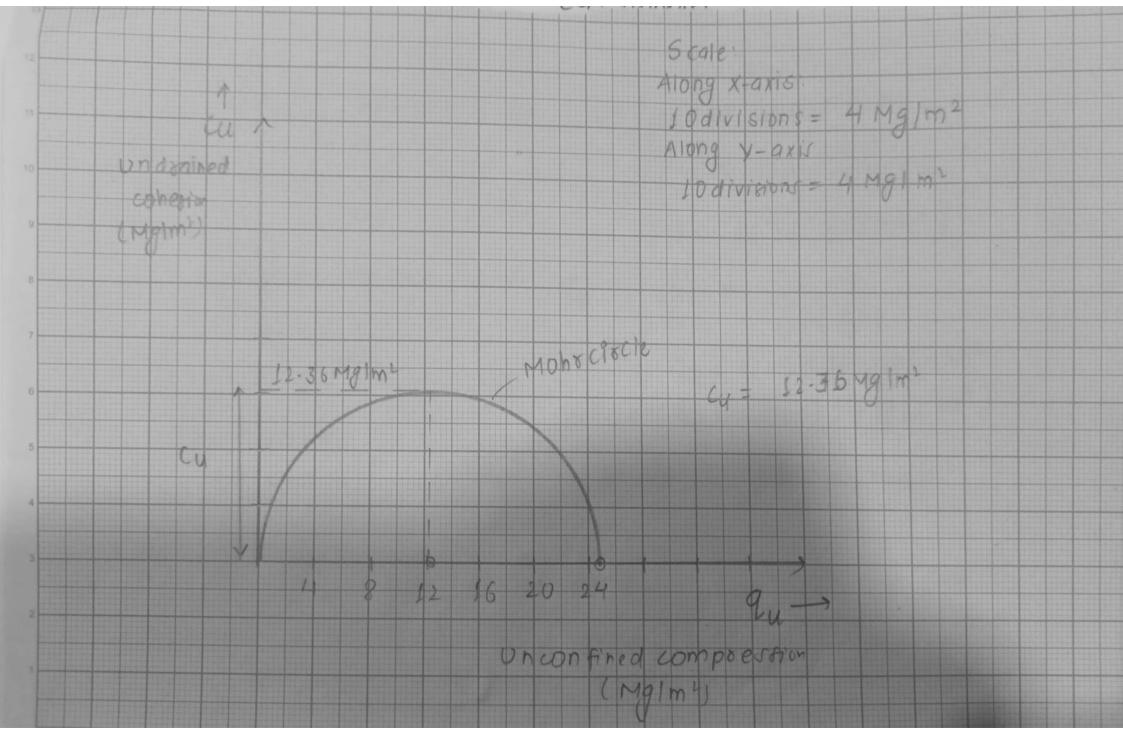


strength test Apparatus

Fig: I VIS J graph

PROCEDURE

- (i) An undistusbed specimen from the field was obtained in the extraction sampling tube. Proper size was trimmed for the test by using specific trimmer. The cylindrical specimen had a height to diameter 2:1.
- (i) The specimen was placed centrally between the two loading plates of the machine. The top loading plate was moved carefully just to touch the top of the Specimen.
- (iii) The dial gauge and proving ring were adjusted to zero
- (iv) The compression load was applied to came the axial Stoain.


(v) The dial gauge and the proving gauge reading after every certain units strain was taken. (v)) The test was continued until failure surface had clearly developed or reading stopped increasing.

OBSERVATION:

Height of sample = 76mm Diameter of sample = 38mm Calibration factor for load = 0.108 kg | div Least count for deflection = 0.01mm

Proving ring Reading (P)	Load Kg (PXD.108)Kg	Dial gauge reading (D)	Deflection (DXO.01mm)
20	2-16	8	0.08
40	4.32	8	0-08
6 D	6-48	8	0-08
80	8-64	8	0-08
100	10.8	9	0-09
120	12-96	9	0.09
140	15.12	9	0.09
160	17-28	9	0.09
	19-44	9	0.09
180		12	0-12
200	21.6		0.12
220	23-76	12	0.13
240	25-92	13	
260	28-08 (Peak)	15 (Peak)	0.15
280	30.24	15	0.15
300	32-4	15	0.15
320	34-56	13	0.13
340	36.72	13	0.13
360	38 88	13	0.13
380	41.01	Jo	0.10

At peak deflection & loading condition,
Load (P) = 28.08kg.
Initial cross-section area
$$(f_0) = \frac{\pi}{4} \times (38)^2 = 113.4.115$$

mm².
Strain (E) = $\frac{changein}{Final height} = \frac{0.15}{76}$
Final height $\frac{10.5}{76} = \frac{10.5}{76}$
Cross-sectional Area at failure condition,
 $A = \frac{Av}{1-E} = \frac{11.84.115}{1-0.002}$
[$A = 1136.388mm^2$]
compressive Strength, $q_u = \frac{P}{A} = \frac{28.08}{1136.388}$
 $q_u = 0.0247 kg mm^2$
[$q_u = 24.71 Mg mm^2$]
Dindrained cohe Stor, $c_u = \frac{q_u}{2} = 12.355 Mg m^2$

CONCLUSION Unconfined a shear strength test is suitable for Unconfined undrained test since it is easy simple and unconfined undrained test since it is easy simple and quick, it is preferred over triaxial test. The specimen is free to fail along its weakness plane and it is not laterally strained.

DETERMINATION OF INSITU DENSITY OFSOIL BY SAND REPLACEMENT METHOD

OBJECTIVE

→ to determine insitu density of soil

SCOPE:

By calculating the insitu density of soil in the field, we can ealculate the volume of easthwork required for any project. The Insity density of soil also helps to know about the field soll compaction.

Apparatus Required:

(a) Toay

(b) sand cone fitted with cone

(C) Sand bucket

(d) Mould

(e) standard sand

(f) Spatula

(g) Metal tray with central hole and impression


THEORY:

Density is an impostant property by which void ratio, porosity, degree of saturation, particle size distribution, compaction, etc ave determined. It is defined as mass per unit weight of soil. The density calculated from the field is insitu density of soil. Sand replacement method & used to determine insity

density of coherionless or warse grained soil, Since, core-cutter. method cannot be used to penetrate through coasse-goained particles like minur ouch chunk.

Volume of hole dug in field = weight of sand on hole

Density of sand Insity density of soil = weight of soil volume of hole dug

XPERIMENTAL PROCEDURE	
Determining Density of sand	0
i) The Internal diameter, height and weight of moving measured.	1
in Mould is filled with sand and its weightis determined.	mined
Density of mass of sandacone:	
i) The mass of sind cone fitted with enough sand	was
ii) The sand jar was invested over a tray until the sand kent falling	e
i) The mass of jar was taken again.	
v) Finally mass of sand in cone is determined by subtracting two masses.	
3) Determination of insitu density of soil	
i) TOP soil in field was removed in order to throw	
levelled.	
i) A pit of about 4-5cm depth was excavated with the help of Icnife.	
i) The mass of soil was collected in a tray and was weighed.	1
) The sand jay with cone was invested and so was poused in the hole.	and
) The difference of weight of sand jar gave mass of sand used in filling excavation from w	e ohicl
volume of hole and density of soil was obtain	red,

OBJECTIVES: To determine field density of soil by sand replacement method

APPARATAUS:

Theory:

Procedure -:

- Determination of density(W1) of sand in laboratory
- Density of soil in the field

Observation and Calculations :

1) FOR DENSITY OF SAND:

Volume of mould $(v_{mould}) = ... cm^3 0.0009478 m^3 = 2 \times (0.10)^2 \times (0.116)$

Weight of mould (W1) = ...gm 2.940 kg

Weight of mould +sand $(W_2) = ...gm 4.360$ Kg

Weight of sand $(W_s) = (W_2 - W_1) gm = (4 \cdot 360 - 2 \cdot 940) = 1420 kg$.

Density of sand= $\frac{(Ws)}{(Vmould)} = g/cm^3$

$$= \frac{1.420 \times 10^3}{0.0009478 \times 10^6} = 1.498 g/c$$

2) FOR DENSITY OF SOIL:

Total weight of vessel+sand(W_1) = 4.760 kg

Weight of tray $(W_2) = 0.885$ kg

Weight of excavated soil+tray (W_3) = ... 2.17_0

Net weight of excavated soil= W_3 . $W_2 = 1.285$ kg

Now,

After pouring,

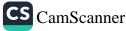
Weight of vessel+sand
$$(W_4) = \dots \frac{4 \cdot 760}{9} \frac{69}{9} 1 \cdot 505 \text{ kg}$$

Weight of cone+sand $(W_5) = \dots \sqrt{340}$ bg

Weight of cone $(W_6) = 0.670$ by

OD CEDUCATION AND CALCULATION

Weight of total sand (W₇) = W_1 , $W_4 \simeq 3.25.5$ Weight of sand in cone (W_8) = W_5 - $W_6 = 1.69$ Weight of sand in pit $(W_9) = W_7$. $W_8 = 1.6.15$ Volume of pit = $\frac{W_9}{density of sand}$ = cm³ = ID 78° lo 9 C C Density of soil = $\frac{\text{Net weight of excavated soil}}{\text{volume of pit}} = \text{gm/ cm}^3$ -1.19 RESULTS: CONCLUSION: Roll no - 169 - 192/195


OBSERVATION AND CALCULATION
(1) from Dentity of formal,
$$d = 10.2 \text{ cm}$$

height of mould, $H = J1.6 \text{ cm}$
Valuate of mould, $Vmould = \frac{1}{T} \times (10.2)^2 \times 11.6$
 $= 947.863 \text{ cm}^3$
Weight of mould, $W_J = 2.940 \text{ kg} = 2.940 \text{ gm}$.
Weight of mould $0 + \text{sond}(W_a) = 4.360 \text{ gm}$.
Weight of sond $(W_d) = W_a - W_J = 4.460 \text{ gm}$.
Den sity of soll
Total Weight of vector + sond $(W_J) = 4.760 \text{ rg}$
Weight of $4 \text{ total} \times W_a = 0.4885 \text{ gm}$.
Net usight of excavated soil + $1200 \text{ gm} \times 1.988 \text{ gl}$ cm
Now,
After pousing,
Weight of sond + cone $(W_b) = 2.530 \text{ kg}$.
Weight of sond + cone $(W_b) = 2.530 \text{ kg}$.
Weight of sond in cone $(W_b) = 2.530 \text{ kg}$.
Weight of sond in cone $(W_b) = 0.6700 \text{ gg}$.
Weight of sond in cone $(W_b) = 0.6700 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.2550 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Weight of sond in $0.000 \text{ (W_b)} = W_b - W_b = 3.6450 \text{ gg}$.
Unume of pit $= \frac{W_b}{dentify of 4000} \text{ JH gg}$.
Density of soil Net weight of excavated soil
 $1.978/04$.

DESULT DENSITY Of sand = 1.498glcc Infity density of soil = 1.192glcc CONCENSION Thus, by seplacing the excavated soil volume by day standard sand of known density, we were able to determine the insity density of soil - which w done without disturbing its state of occupied volume or void oratio or any other properties. PRECAUTION

(1) Care should be taken while excavating the pit so that it is not enlarged as we level below surface which could b. cause decrease in density.

(11) NO 100se material of soil particles should be left in pit.

